SECOND QUARTERLY PROGRESS REPORT
14 August 1964 to 14 November 1964

Contract NAS 8-11204

FEASIBILITY STUDY FOR DEVELOPMENT

OF A HYPERVELOCITY GUN

for

National Aeronautics and Space Administration
George C. Marshall Space Flight Center

8 Decambér 1964

MB-R-64/86

MB ASSO CIATES
San Ramon
{near San Francisco}
California
837-7201




i INTRODUCTION

The work s2atement for the second quarter of this coniract specified six
tasks of two general kinds: those concerned with answering some remaining questions
about the operation of the raif gun and those concerned with setting up an auxiliary
field system. The following sections describe our progress in carrying out these tasks.

. VOLTAGE MEASUREMENTS ACROSS THE MUZZLE AND BREECH

The voltage differences shown in Figure 1 are related in the following

Y=Y +%/l2) o

where 1 is the total curreni through the arc and — is the inductance included
between the breech and the arc. By decomposing  /

we have:

way:

Vo= Vop+ L%T + 4T 2

where £”is the inductance pet unit length of the rails. ‘,/,. , which is the
voltage across the arc, may be measured anywhere across the rails in front of

the arc.)

The following actual measurement of I A p Vé y l/, . and X taken
at peak current (I =0) were consistent with equation {2:

T = 290kamp
L7 = 028/(h/m

X = 3.2 km/sec
Vs = 700v
M@ = 440 v

The total electric power info the gun is %I Of fhlS, M» Z s
memevubly dissipated in the are, £ I7 goes into mcreasmg the magnetic field
in the region befween the breech and the erc, £ L Z*% mfo crechng

field in the region being uncovered by the mohon of the arc, and & / 72X
inio the kinetic energy of the arc~projectile system. The fraciion V,/V}, is,
tharefore, a minimum measure of the energy inefficlency of the gun.
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In previous experiments with no projectile, Vg, / Vi, appeared to be
greater than 90% indicating o very poor energy efficiency of the gun. During
this quarter, the experiment was repeated with a projectile (a 1/8 inch aylon
cube), and V,/V}, was found to be roughly 60% during almost the entire
acceleration. Since the magnetic field energy is always ot least as great as the
arc-projectile kinetic energy, the net energy efficiency must be less than half the
complement of 0%, i.e. less than 20%. The gross energy efficiency computed
from the projectile mass and velocity and the condenser bank capaclty and voltage
was 2,0% — less than the 20% upper limit on the gun's efficiency, as it must be.

. VARIATION OF BARREL CROSS-SECTION

At the last planning meeting, we made the conjecture thai the mass-input
would be proportional to the gap surface width of the ralls, and that, since the
total Lorentz force, for the mognetic field constant, is proportional to the cross-
sactional area of the barrel, the effect of the mass~input would be inversely pro-
portional to the width of the barrel. Experiments were casried out with 1/8,
1/16, and 1/32 inch square end 5/32 inch round barrels to test this conjecture. The
result was that the effect of mass-input may have been reduced by larger barrels,
so that the velocity of the free arc was enhanced (up to 16 km/sec at 1 atm.), but,
for the correspondingly heavier projectile the velocities were roughly the same
{about 5.5 km/sec), the only improvement being in energy efficiency.

. This may have some possible use in a two-stage drag~operated device, in
which the vslocity of the second-stage free arc must be greater ihan that of the first.

v. VOLTAGE DROP MEASUREMENTS OF TO TAL RAIL CURREN T

Six attempts ware made fo measure the fotal curent into the rails by
recording the voliage drop along a segment of the Input lead fo the gun. (The method
we usually use is magnefic pick-up.) Unfortunately, the results were rendered un-
intelligible by what seems to bs inductive effacts. These arose from the close proximity
of the input lead to the gun. This arrangement was necessary because of the short,
thick leads, for low inductance, between the secondary of the fransformer and the gun.
The circuit used (Figure 2) was designed to cancel out the inductive effects due to the
uniform field of the inpui leads; however, it could not balance the non-uniform fields
of the gun and secondary output terminals.
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V. AUXILIARY FIELD RAIL GUN SYSTEM

In accordance with the planning meeting for the sacond quarter, we have
assembled and made preliminary tests on an auxiliary field rail gun systam. {See
Figure 3. The considerations leading to this approach cre discussed in "Study
of a Rail-Type Hypervelocity Projectile Accelerator" by D.E. Brast and D.R.Sawle
in the Proceedings of the Seventh Hyparvelocity Impact Symposivm, Tampa,

Nov. 17-19,1964, AFSC, USABRL, USNRL), Copy aitached.

In additic to already existing equipment, the following were made to complete
- the system:

—d
°

a condenser bank for driving the auxiliary field turns

a circuit for charging both banks in paralle!

a friggered spark gap for discharging the new bank

. an impedance matching transformer for the auxiliary field circuit
. arail gun with euxiliary field turns

°

<

(S0 -\ X

The new condenser bank consists of ten 14 «fd, 20 kv capacitors of the same
type as used in the old bank {Sengamo, type EDC, Class B). {In addition to these,
an eleventh capacitor was bought to replace a damoged one in the old bank). These
ten capacifors were strapped fogether in pairs and each pair placed on a separate, four
whea! dolly . Each capacitor is connected to the spark gap switch by separate coaxial
cables. These provisions will allow for easy moving of a pair of capacitors from the
auxiliary to the gun clrcuit or vice-versa os the need arises.

A rerote conirol charging and auiomatic crowbar mechanism was attached
to the new bank. The chorging leads are connected to the same power supply as
the old bank so thai both banks may be cherged in parallel, each being disconnected
from the charging supply as it reaches the desired voltage. The banks are
discharged through their respective spark gaps in a controlled time sequence provided
by an Abtronix delay chassis. We iested this arrangement and found it reliable.

The gun iiself, shown in Figure 4, is of the usual sandwich construction. The
steel dowel pins give lateral support, ond the whole assembly is clamped from above
and below by wo one-inch thick melamine-fiberglass blocks {not shown) drawn
together on each side of the gun by 3/8 inch high~tensile-strength steel bolss.
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The two auxiliary turns cre connectad af the muzzle of the gun in perallel
to the secondary terminals of cne iransformer. The rails are connected ot the
breech of tha gun to the secondary of the other ironsformer., The field produced in
the rail gop by the quxiliary turns is about 3 gauss/amp. Fer modest auxiliary and
rail currents of 100k amps, the resuliing Lorentz force will accelerate a 5 mg
projectile to 30 km/sec in 10 «sec.

Preliminary fests with a prototype of the gun shown in Figure 4 were made
with only one capacitor in the rail circuit. With a much lower auxiliary field than
would be produced in the present gun, a velocity of about 2 km/sac was achisved.

During the next quarter, we plan to complete the preliminary t esting of ihe
components and perform the firal testing of the entire system.

Y. o
it & ot
David E. Brast
Project Engineer

Appa“oved‘
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‘ﬁ\ﬁhurT Biehl~
Technical Dltemer
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MHD RAIL-TYPE ACCELERATOR

ABSTRACT

A rail gun with an electric arc as the armature was used to
accelerate o 2.4 milligrom nylon sphere to a velocity of 6.0 km/sec

ond 5 and 31 milligrom nylon cubes to velocities of from 5 to 6 km/sec.

The energy source was a 28 k joule, 142 «fd conderser bonk. The
authors describe the system used, anclyse the Lorentz force and the
limiting phenomena of ion sputtering and high-field skin heating, and
propose a slow auxiliary field as a meons of overcoming these
limitations.

N




MHD RAIL-TYPE ACCELERATOR
SYMBOLS
~ is of the order of
& something of the order of
4, 9. r,Z, p,A/;(/-X see figure 1
& magnetic induction

T  instontoneous cumrent

I, peak current
| } current density
.’ inductance per unit length

=

mass of the projectile

p1r  mass=input per unit charge

f,z, rodius of fho‘ount electrode of a coaxial rail gun
S surface of integration

+

time

velocity of the arc
volume of integration
unit tensor

skin depth

electrical conductivity

qg‘.»<<

« angulor frequency



MHD RAIL-TYPE ACCELERATOR

INTRODUCTION

The defining features of a rail gun are (See Figure 1) a pair of
conducting rails and aocross them a conducting armature. Electric
current is passed through the rails and armature so that the magnetic
field produced by the current in the rails (and possibly in ouxiliary field
coils) interacts with the current in the armature. The resulting Lorentz
force (jxB) tends to accelerate the ormature awoy from the end of the
rails at which the current is introduced.

asmas ‘ Ond solid conductors®
projectile is irself conductive and serves as the armature. |n our gun,
the projectile is nonc tive (usuclly nylon) and the armature that
drives it is on arc plasma.” This circumvents the problem of ohmic
heating in the projectile.

rlzctically, two Ixinds:3 armature have been used, electric arc
pl ~In most projectile accelerotors, the

By this means, we have succeeded in accelerating 2.4 milligrom
nylon spheres to velocities of 6.0 km/sec and 5 and 31 milligram nylon
cubes to velocities of about 5 or 6 km/sec.

The system used consists of o 28 k joule, 142 ~fd condenser
bank, which is discharged by a triggered spark gap either directly into
the gun or into an impedance matching pulse transformer giving peak
currents up to 700 k amp at ringing frequencies as high as 25 k ¢
The arc is initiated by a small bit of aluminum foil behind the projectile
and travels the entire length of the gun during the first half-cycle of
the discharge. When a pulise transformer is used, about three fourths of
the bank energy is dissipated in that time. Of the total bank energy,
however, at most about 3% goes info the kinetic energy of the
projectile. ‘

The gun itself is anywhers from three to eight inches or 30 in
length and consists of a pair of metal rails, usually copper, sandwiched
between two insulating slabs. A cubic projectile can be fitted snugly
into the resulting square barrel. Alternatively, a cylindrical barrel can
be fabricated by machining or molding and a spherical projectile fitted
fo it.

Routine diagnostics include magnetic flux loops very close to the
borrel o record the progress of the arc, a photoelectric muzzle-watcher

7
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MHD RAIL-TYPE ACCELERATOR

fo record the appearance of the luminous arc plosma at the muzzle
(this always coircid es with the current front as determined by the flux
loop at the muzzle)’a flux loop 10 record the total instantaneous
current, and trarsit time and croter depth measurements to determine
velocity. Occasionally, we hove measured directly the voltage across
the muzzle and breech of the gun to derermine the resistive voltoge of
the arc (about 200 v) and the rate of change of flux.

In the rail gun accelerchon of plasmas, velocities upwards of
100 km/sec have been achjeved!s Offhond one would, with some
modesty, hope to use the same techniques and more energy to achieve
somewhat lower velocities for small projectiles. However, because
even a 1 mg nylon sphere has an oreol mass density 106 times that of
rail gun plasma bodies (10 gm/cm? versus IO/Qn/cm ) the magnetic
pressure required fo produce the same acceleration in the projectiles
as in the plasmas is correspondingly higher. Smaller accelerations of
longer duration over greater distance lead 10 (1) greare: loss of
energy into unusable magnetic fields due to lateral diffusion and forward
expansion and into mass sputtered off the rails by current carrying ions,
(2) heating of even a nonconducting projectile by the arc through
thermal conduction, (3) such o lorge impedance that a second arc
strikes at the breech even before the first one reaches the muzzle.

The magnetic fields needed for large accelerations are of the
order of a megagauss. The ohmic heat per unit volume produced by
such high fields (turned on fost enough to be contained by good
conductors) is sufficient to melt the current carrying portion of the rails#
and momentum then goes info the molten rail material. Also the
pressures are so high that the rails suffer plastic flow.

The way out of the dilemma seems to us to be a slow auxiliary
field. This, of course, wostes more energy in the magnetic field and
does not decrease the torce on the oils, but it does eliminate
sputtering and «kir heating

The following is a more detailed description and analysis of the
operation of the rail gun including some relevant experimental results.



N

" MHD RAIL-TYPE ACCELERATOR
OPERATION OF THE RAIL GUN

The Lorentz Force On The Arc

The Lorentz force on on arc in a rail gun without an auxiliory
field can always be writtenas = <°Z“ , where I s the
instontaneous total current in the rails, and L’ is some inductance per
unit length. The total momentum produced by this force will then be
SE=LI% 5 L If L7 isnearly constant in time, and if we know its
value, we have a very useful expression for the momentum in terms of
an easily measured quantity, I . In general this will not be the case,
becouse £ is dependent on the current distribution in the rails, and,
except in special cases, for example, the case of infinitely thin wire
rails, this current distribution will vary with time in an unknown way.

Fortunately, the rail gun considered here falls under on of those
special cases, at least to an approximation, and we can get an estimate
of £” by means of the Maxwel| stress tensor, 25 - L (8/°4 (s
the unit tensor) in the following way.

The Lorentz force on an arbitrary volume, V/, is given by
F=Jjrsd¥
— Ay —_ 2 . .
§ 4 (884 15/21)-ds

where .S is the surface enclosing V', ond 45 is ou . For S
(See Figure 1) we take the truncated spherical surface of radius »
centered about the arc and the disc /# perpendicular 1o the axis of
symmeiry at o distance z from the arc. The integral over .S is the
Lorentz force on the portion of the ruils enclosed by S and upon the
arc.

M

We now let 5§ go fo infinity. )i,.bispmm'ﬁomlto
1/»r* . Therefore, the integral on is proportional to !/ ~* and
goes to zero. *” is now the entire plane. For z*» g% , the forward
component of the Lorentz force will be given by the integral of
o, /#/” over this plane. The integral of 5, £ - A4S will be
nogiigible for the following reasons. Ay is due solely to the

et oo
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current mandneorﬂuaé, so thot
"1//’ /ll /Z

//’ -~ llé' '(b /V/“Ij./z.
On the other hond, inf‘ngop

@

/f,/ ’v/,f./?‘ %0 thot

[, 42, 16/*145) ~u I"

If one compares the opptmumh expressions in (2) and (3), one sees
that, for Z*>.42, [, -+ P K- /5 can be ignored, ond
that the fotal forward force on the rails ond arc is given by

Frovat = 4. Z2. 18/] 45/

(223 44)
The forward force on the rails alone is given by

Frh = L B lb1l4s] 4 Jok £.5.45 W

where 4 £ is the crom section of the rails, £ is the surface of the
rails, ond /S ismoufwwdfn.ﬂnmtls. The forward force on the
arc, .. isiustFE_ — F ./ or

)

Trta /
Fave = a6 1451~ [ £ 5 45 @
The first integral in Equation (5) is the external magnetic energy per

unit length behind the arc.

In the cose of an azimutholly symmetrical discharge in o
coaxial -cylinder rail gun, the first integral Is just J;'.!- 17/ "a.-afi ,
¥ amnch

which is just 77 times the geometric external lnd)chnoo The
second integral is zero in this case, becouse both £r ond £-./S,
are zero. Therefore, for azimuthal symmetry, £ s just the
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geometrical external inductance per unit length, independent of the
radial distribution of the current in the electrodes.

The some result holds for the previously mentioned special case
of infinitely fine wire rails and for the case of infinite conductivity.
This can be derived from Equation (4) or from the conservation of energy
ond Faraday's Law. Both of these derivations depend on the foct that,
in these special cases, we con define o unique mogneﬂc flux through
the circuit.

in the case of interest, the distharge is not azimuthally

symmetrical, the cross sectional size of the rails is comparable to the
size of the gap so that the rails cannot be considered infinitely thin,
and the electrical skin depth in the rails for typical transit times is
considercble compared to the other dimensions so that the roils cannot
offhand be considered of infinite conductivity. Near the arc, lines of
induction which cut the rails because of their finite conductivity have
components both normal to the surface of the rails and along the

- direction. Therefore, the second integral in Equation (5) may no
longer be negligible.

In order to estimote this integral, we again make use of the fact
that, away fiom the arc, only the current in the arc and not the curtent
in the rails contributes to £, . £, will, therefore, be roughly
proportional to the inverse square distonce from the arc, (/Z* , and
to the sine of the angle between the railsurface normal and the radius
vector from the surface to the center of the arc. This sine is approx-
imately 4/,cz sothor 4, is proportional to 1/Z® . Ata given
distance, z, from the arc, the width of the orea on the rails cut by &
will be the skin depth, a‘ , corresponding to the time for the arc 1o
travel that distance. Letting v be the velocity of the arc and o the
conduchv:ry of the rails, we have

O _"OT/“o T..\-VZA/.’

Jp 0 B 5 ,.(5 - ©)
~1 0 R A S T
-~ /"o /5/ j’llcg v

If we let the first integral in Equation (5) be £ < "L~ ond the second
integral a correction to it, then, whatever the exact volue of £ s,
it will be roughly true that £ ~,«, and near the gap, / A&/ ~« 'I{j .
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Substituting these expressions into Equation (6), we have

7'?;[ by 84S ~ [—11///"“7?]

Putting in the typical values

j = 1.5 mm
V= Slun/soc
g = 58x107mho/mforcopper

we have |/ Vi, > Vj ~  0.04.

This is the order of magnitude of the fractional negative correction that
will have to be made in the expression for the Lorentz force derived
from the first integral of Equation (5). From the above calculation, we
see that, for copper, it is perhaps small enough to be neglected. For
steel with a conductivity of, say, 5.8 x 105 mho/m, the correction is
about 0.12, perhaps large enough to be considerable.

As long os this correction is not too large, the skin depth at A
will be small enough so that we can get o foir approximatign fo £ from
the high frequency inductance per unit length. Even forceayg , this
may still be somewhat innaccurate becouse the surface current disfri-
bution in this problem is not exoctly that of the steady state alternating
current problem. However, when it is accurate enough, the high
frequency inductance per unit length can be measured directly ina
ringing circuit or indirectly by means of o two-dimersional electrical
analog.

To summarize, ﬂnmnbrumfhcmjsﬁivmby
Fove = %2 I[1-Efgdom)] @

where £’ is roughly the high-frequency inductahce per unit length
and &/'ur;_/;/———) is a negative correction of the order of the ratio .

between the skin depth near the arc to the width of the gap.
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Mass-Input Limitation On The Projectile Velocity

The momenfum as calculated from Equation (7) using the
measured values of £7 and I is actually about three times greater
than the mass of the projectile times its measured velocity. Asa
tentative explanation for this we proposed a mass-input to the orc
proportional to the total charge through the arc. This is the sort of
thing one would expect if sputtering were taking place.?

For experiments without an impedance mdtching tronsformer, the
current hod the form of a slightly damped sine wave. Putting L, s» «7
for the current, M for the mass of the projectile, and v, for fhc mass-
input per unit charge, we get the following expression for velocity

Y = L’I!: « 71— L s/n gavf 8
oy ’—"““*—*, (8)

I/, + /- acs «T
by equating the momentum of the projectile and arc plasma to the
momentum calculated from Equation (7).

Figure 2 shows a plot of position versus time based on
Equation (8). The curve was made to fit through a set of experimental -
points by setting m; = 4,6 Cu atoms/ion. In order to show the
seriousness of including mass input, another curve with r1 = 0 was made
to fit through the experimental point at 30/( sec by setting £’ equal
to obout one-third its measured value. It is hordly possible that the
measurement of L’ could be so much in error, but, even if it were,
the curve for #« = 0 has the wrong shape. It, therefore, seems that
phenomenologically, at least, a charge proportionol mass~input
describes the situation. The following section indicates how the
description may be more than phenomenological.

lon tteri

In the present range of temperatures (10 to 100 ev)zund
mognetic fields (!05 o 106 gouss), the electron ond ion cyclotron
frequencies and radii will be roughly

&, ~ 1012/s0c 4 ~ 10/ frec

r. ~ .0001 mm s ~ .0l mm
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Since these rodii are much less than the inter-electrode spacing of

1.5 mm, if the electron collision frequency for current producing

collisions (electron-ion or electron-neutral) is much less than 2/,

which is probable, then the arc current will be corried predominantly
by iors.

The fotal resistive voltage drop ocross the arc has been measured
as roughly 200 v. Current carrying cdpper lons impinging on the
copper with the corresponding energy of 200 ev would sputter roughly
0.9 copper atoms/lon (61 atomic maoms units; see the included table).

The discrepancy between 0.9 and 4.6 may be accounted for by
skin heating, which certainly does melt rail material and may even
enhance the sputtering yield. The next section discusses this effect.

Ohmic Skin Heating

During the transit of the arc down the rails, current ond
magnetic field diffuse into the rail due to the finite conductivity of the
rall material. As we will show, the average energy demsity deposited
by ohmic heating in the region of the arc is opproximately the magnetic
energy dersity in the gap. If this energy density is greater thon the
_heat content of the rail material from its Initial temperature, say, room
temperature, to just above its melting point, then rail material will be
melted in that region.4 Since thers is @ forward component of the
Lorentz force on the ruils neor the arc, this molten material will be
carried forward and will, therefore, contribute to the mass of the arc~
projectile system. (Although heating continues in the rails behind the
arc, the Lorentz force is outward, and the molten matecial there will
only be pressed ogainst the rails, not carried forward.) -

The heating in the region of the arc is determined as follows.
The average power per unit volume is / 2/ whers /) is the average
wmd«:ityadO‘ﬂanﬂvlé. The volumé under ider-
ation has the thicknes of the rails, 4, and an average depth /274>,
the electrical skin depth corresponding fo the length of time, 7 , for
the arc to travel its own length. The current density is, therefore,

(I/g)v o7 27 , where Z is the total current. The
av power is 4, I* ‘Za<T . ond, since this power is

applied in the region of the Grc only over the time 7, the heat
developed is e <~ a j‘- , which is roughly the magnetic energy
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IMPORTANT PHYSICAL CHARACTERISTICS OF
ELEMENTAL RAIL MATERIALS

Self
Total heat sputtering
content 20°C yield at
through M.P. 200 ev* Electrical Temnsile

h
k Iﬂ!' amuyu Resistivity S

Element Number cm - ion s 2 om 107 pei
Be 4 6.9 11 4.3 50
C 6 >15.0 0.4 800 -
Mg 12 1.9 8 4.6 30
Al 13 2.7 8 2.8 40
Ti 22 > 6.0 n 3.2 100
v 23 > 6.7 17 25 100
Cr 24 >12.0 37 13 60
Fe 26 9.2 34 10 100
Co 27 10.5 39 9.8 100
Ni 28 9.2 43 7.8 160
(&1 29 5.6 61 1.7 70
Zn 30 2.1 35 5.8 30
Y 39 >3.5 24 &5 20
Zr 40 >5.1 20 39 100
Nb 4] >10.0 20 14 50
Mo 42 211.0 31 5.7 60
Ru 44 >10.0 38 7.6 -
Rh 45 >8.5 52 4.5 100
Pd 46 6.8 98 10.8 - 40
Ag 47 >3.3 127 1.59 40
Hf 72 >5.0 3 36 100
Ta 73 11.0 33 12.4 150
w 74 >12. 28 5.5 200
Re 75 15.0 46 19.1 150
Os 76 11.0 - 54 9.5 150
Ir 77 11.0 88 5.3 -
Pt 78 8.2 97 9.8 50
Ay 79 5.4 171 2.2 20

* Not much data exists on the sputtering of cathodes by ions of the
same element; therefore, the self-sputtering yields listed here have
been based on data for sputtering by noble gases. 10 Since sputtering
at those energies is thought fo be predominontly a momentum transfer
process, the yield for eoch element hos been taken the data for
the noble gas of most nearly the same atomic weight.



MHD RAIL-TYPE ACCELERATOR

density in the gap, as stated. For

I = 200 k omp and
] = 1.5 mm,
L5 3

27¢ 10 k jovle/cm

The averages above are very loosely defined, and the
consequent results are only good to an order of magnitude. The actual
heating will depend upon the details of the current distribution in the
rails. Even so, one can see from the toble, that this is the right order
of mognitude to melt the current carrying part of the rail .

From flux loop data, we have a typical value for 7" of 10 4 sec.
The corresponding electrical skin depth is 0.7 mm, and the thermal
skin depth is 0.03 mm. It would, therefore, be impossible for the heat
generated to dissipate by conduction during the passage of the arc. The
appecrance of the roils after the shot bears this out. In fact, foro
steel rail with 8 mii copper clodding, the entire copper foce was
melted in the region of highest current. The total amount of copper
melted over a 6 cm length has a mass of from 0.1 to 1 gm. Ten or 30
milligrams of this carried forward against the projectile would account
for the mass-input effect.

For a given energy demsity the amount of materiol melted will
increase in direct proportion to the skin depth and hence the square root
of the resistivity in the rail material. In oddition to the decrecse in
inductance, this may have contributed to the poorer performonce of
zhdmdhmwmﬂmhﬁnsmlnlhwl.
deformation.

Mechonical Effects

Lorentz Force On The Rails

In the region behind the arc, the Lorentz force density is out-
ward from the gap in the plane of the rails. The equivalent pressure ot
the gap surface of the rails is just the magnetic energy demsity in the
gap. For the case described in the last section, this is o pressure of
about 10% psi, enough to cause plastic flow in the solid rail material.
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| In addition to plastic flow at the gop surfoce, the Lorentz

| force couses gross motion of the rails in the lateral direction. This
begins to occur after the shock wave created at the gop surface trovels
fo the outside edge of the rails and back. Since the rails are restrained
in this direction by bolts or steel dowel pins, this motion causes plastic
flow of the rail oround the boifs.

The oppearance of the rails after the shot shows that consider-

| able plastic flow and gross motion of the rails do occur. Depending

| upon the rail material, the pedck current, ond upon the insulator,

| which serves to prevent relief perpendiculor fo the plone of the rails,
the gap may be enlarged by a factor of from 1.5 0 3. The effect of
this spreading is to lower the Lorentz force on the arc. This con be
seen either as a decrease in inductonce or, equivalently, a drop in
magnetic pressure due o exparnsion.

The Pressure And Length Of The Arc

The arc is contained at the front by the inertial forces of the
o projectile and of ifs own mass, from the sides by the rails and
. L insulator, and from behind by what may be thought of as a mognetic
pressure, (typically 108 psi). In the steady state, the ordinary kinetic
pressure in the arc will just bolonce this magnetic pressure. For
temperatures of 10 to 100 ev this corresponds o the following:

1022 1 102! otome/cm3 particle density
1 10 .1 gm/cm? mass dersity

Given the mass of the arc and the cross section of the barrel,
the orc length is completely specified by this density. Flux loop
mespurements give this length & very roughly ! am. The corresponding

moms ronge is 2 10 20 mg, corsistent with the chesrved masn-inpyt
limHation.

The mechanical effect of the arc pressure is 1o strems the
insulator over the arc. This stres is followed by another due fo the
plastic deformation of the ralls, as described above. One-half inch
thick cloth-phenolic insulators have been broken in two along the
barrel by this shock. Melamine-glass cloth lominate blocks, which we
now use, show some separation of the laminations but séem 1o be more

| S thon strong enough to withstand the pressures in the present current

/&
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regime. This sort of failure helps to lower the Lorentz force on the arc
by ollowing the rails to spread.

Experimentol Results -

Rail Materials

Experiments with rails of

copper

mild steel

tool steel

pure aluminum
aluminum 6061
oluminum 7075
magnesium
tungsten

which were designed fo test the sputtering characteristics of these
metals, seemed merely to show the strength and melting characteristics
described earlier. An attempt wos made to seporcte these character-
istics by using o composite rail with a hard core, in one case of
melamine fiberglass laminate and of tool steel in onother, ond a
clodding of the metal under comsideration. We also used a rail of mild
steel with a copper edge attached by hard soidering. The clodding
technique showed the best results.

insulator Material
Experiments with guns of identical construction except for the

thin insulating liner next fo the rails were done at a relatively low
current fo minimize mechanical effects. The results were as follows:

insulator . ' Projectile Velocity
gloss 3.8 km/sec
melamine~fiberglams laminate 3.8 km/sec
epoxy —fiberglass laminate 2.0 km/sec

The glass ond melamine showed much less erosion compared with the
epoxy .
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Current Variation

Two series of shofs at various currents with guns of identical
comstruction within each series showed an increase in velocity with
current up fo an optimum current, after which the velocity fell off.
The optimum current was higher in the gun of stronger comstruction.

CONCLUSIONS

The explanation of these results in ferms of the preceding
discussion is that the ideal operation, with /7 constant and mass-
input due to sputtering, tokes place ot lower magnetic fleld intersities.
In this regime, velocity increases with increasing magnetic fleld.
Beyond some critical fleld intersity, £/ is reduced by deformation of
the rails, and large scale melting of the roils tokes ploce. in this
regime, velocity octually decreases with increasing magnetic field.

This limitation con be overcome with auxiliory field fums.
However, these turns cannot be in series with the rails, bacause,
although such an arrangement reduces the effect of sputtering by
increasing L’ 4 it does not eliminate the problem of skin heating. As
long as the skin depth corresponding fo the rise time of the euxiliory
field is small compared to the width of the rails, the ohmic heat per
unit volume will be roughly the same as the magnetic energy demsity.
This obstacle can be circumvented by tuming on the auxiliary fleld
slowly. For rails of centimeter width, ten or so millissconds would be

long enough.

In light of the foregoing, a roll gun should be comstructed ond
opercted as follows.

The rail material shauld have high yield strength, high
electrical conductivity, a low self-sputtering yleld, and a high heot
content from room temperaiure through the melting point. The o
included table shows that molybdenum, rhodium, tungsten, and iriduim
might be the bast roil materiols. This rall material should either be

used in its toughest state or else used as cladding over a very strong
core.

The inulating support structure should be as strong as possible
to prevent spreading of the rails.
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A slow (ten milliseconds) auxiliory mognetic field of the
highest possible intensity should be used.

Given the best rail material and the strongest supporting
structure, the energy density in the gap should be as high as possible
without melting or spreading the rails.
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CHAPTER I

INTRODUCTION

Current structural design practice calls for decreasing struc-
tural tﬁickness as a result of weight limitations; as a consequence,
many structures are permitted to buckle and are then used in the post-
buckled state. Members that previously served only in a nonstructural
capacity are used to sustain loads greater than those predicted in the
usual "Euler load" sense. In addition, structures subjected to these
high static loads are frequently expected to survive dynamic disturb-
ances. This is particularly true in aircraft and space structures where
the stiffness and dynamic characteristics of a buckled rectangular panel
have become important ﬁith increasing flight sPeééé.N“ihe buckling ofr |
the skin panels, whether caused by‘ﬁi{wloads or by thermal expansion,
will cause a marked reduction in the stiffness of the structure. The
changes in frequencies and mode shapes that take place as a result of
thermal expansion affect the various static and dynamic instabi;ities
considerably. The purpose of the present study is to determine the
dynamic characteristics, that is, the natural frequencies and mode
shapes of vibration of a rectangular Q}ﬁﬁe, in terms of a load para-
meter both before and after buckling.

The free vibrations of elastic bodies or sftructures about
the unbuckled equilibrium configuration have been studied extensively
before. The natural frequency and the mode shape of vibration are ob-
tained from the solution of an eigenvalue problem. If such a body or
structure is first preloaded statically, then the resulting frequency

of vibration is increased by tensile stresses or forces and decreased

-1-



by compressive forces. In the case of compressive loading, it goes to
zero when the compressive force reaches the buckling load.

The most familiar example of such a problem is the lateral
vibration of a simply supported bar which is axially loaded. The square
of the frequency of the vibration is linearly related to the axial
force. Willers(l) has calculated the decrease in the natural frequency
of a clamped circular plate under uniform radial compressive forces.
Massonnet(g) and Lurie(j) have shown the existence of an intimate re-
lationship between normal vibrations and instability. A definitive

k)

discussion can be found in the book by Bolotin.( In general, within
the framework of linear theories, whenever the mode shape of buckling
and of vibration in the presence of axial load are the same, the square
of the natural frequency varies linearly with increasing axial load
until it vanishes at the corresponding buckling load. This property

is often used to predict the buckling load by extrapolation of a few
points obtained experimentally at relatively low loads on the frequency
squared-load curve.

The buckling of a simply supported plate under edge compres-
sion was first studied by Bryan(5) in 1891. The buckling loads for
plates that are not simply supported have been investigated extensively
by Timoshenko.(6) These problems are all solved within the framework
of linear classical theory under the assumption that the deflection of

the plate is small in comparison with its thickness; therefore the

solution applies only to the incipient state of buckling. It is ob-

- vious that the linear theory of plates no longer applies when the be-

havior of the plate above the buckling load is to be investigated.



A set of nonlinear differential equations for plates with
large deflections was introduced in 1910 by von Kﬁrmén.(7) Owing to
the nonlinearity of the equations, there exist relatively few exact
solutions. However, various approximate solutions have been presented
by Cox(8) and Timoshenko,(6) and a more accurate solution of the
problem of large deflections has been given by Marguerre.(9) By means
of Fourier series Levy(lo) has obtained an "exact" solution to the
large deflection equations of von Kérmén for square plates. PFriedrichs
and Stoker(ll’lz) have used methods of perturbation, power series and
asymptotic expansions to solve, in a very exhaustive manner, the prob-
lem of a simply supported circular plate subjected to radial compressive
loading. Alexeev,(l3) using a method of successive approximations,
has obtained a solution for the square plate buckling into both one
buckle and two buckles. Masur(lh) has utilized a stress function space
together with a minimum energy principle to obtain a sequence of solu-
tions with error estimates for the post-buckling behavior of plates.
With the exception of the analysis of Alexeev,(lj) all of the above
studies of the post-buckling behavior of plates are concerned with
primary buckling.

Secondary buckling has been observed through experimen*ts,(15’16"]“7):E
and in the case of circular plates, the instability of the primary buck-
ling mode has been pointed out by several authors.(ll’lh) Further,

Stein@& hags used a perturbation technigue to convert the nonlinear large
defle;t;on equations of von Kdrmén into a set of linear equations and

to investigate the post-buckling behavior of simply supported rectangu-

lar plates by solving the first few of the equations. His investigation
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indicates possible changes in buckle pattern; the same has also been
noted by Koiter.(19)

Bisplinghoff and Pian(eo) have treated the case of vibra-
tion of a thermally stressed rectangular plate which is simply sup-
ported and free to displace laterally. Shulman(21) has considered
the case of a uniformly heated plate with two opposite edges simply
supported and with generalized support conditions on the other two
edges. Both papers consider the small vibrations of the plate in
its pre- and post-buckling states, the analysis of the latter being

(22) have treated the case of vibration

approximate. Herzog and Masur
of a buckled circular plate by means of both perturbation techniques
and power series expansions. Their analysis is "exact" within the
limits of classical plate theory, small amplitude vibration and in

the sense of a converging series which has been truncated.

The present study is concerned with the linearized vibrations
of a rectangular plate relative to a static buckled configuration, and
with the instability of the buckling modes. Both the static and
dynamic equations of equilibrium are solved by perturbation techniques.
If perturbation coefficients up to the third order are included, the
results are acceptable for a significant range of the loading parame-
ter. For large values of the latter the frequency of vibration of the
plate is obtained by means of the Galergin method while the static

Y

problem is solved by a method similar to the one due to Marguerre.



CHAPTER II

FORMULATION OF THE PROBLEM

In what follows we consider the xy plane to be the middle
plane of an elastic, isotropic plate and =z the direction of the
lateral deflection. The plate is subjected to membrane forces in the
plane of the plate. For the sake of convenience, the index notation
is used for the general discussion of the problem, with Latin sub-
scripts i, J and k taking the values of x and y, a repeated subscript
representing the sum of all allowable values of that subscript, and
a comma followed by a Latin subscript denoting appropriate differentia-
tion.

Iet a plate of thickness h be subjected to prescribed edge
thrusts ATy on B' and to displacements AU; on B", in which
B = B' + B" forms the boundary of the region R of the middle plane
and A 1is a parameter assuming increasing positive values. The mem-
brane displacements and stresses u; and tij’ respectively, may then

be conveniently characterized by

(o] '
uy lui + Ui
(2.1)

t

o 1
ij ktij + Tij

In Equations (2.1) the first terms on the right side correspond to the

unbuckled state and are governed by the customary "generalized plane

stress" equations

(¢]

o E l-v, 0O ) 0 _
[———(u.,j + uj,i) + vuk,ksij] =t3

iJ "2 21

in R (2.2)




e}
ti503

]

Ty on B'
(2.3)

u? = Ui on B"
1

in which E and v are Young's modulus and Poisson's ratio, respec-
tively, sij is the Kronecker delta, and n; are the components of
the unit outer normal.

The second (primed) terms in Equations (2.1) represent the

changes induced by buckling and satisfy the set of equations

' E 1-vy
T = — [=XU! + U, + W . W )+ v(U + W . )s..]l=1
1J l-ve 2 i,J Jdsl y1 :J) ( k,k %w)k ;k) iJ ji
t =0
i3,
Tisny =0 on B'
i3%d
(2.5)
Ul =0 on B"
i
in which the static deflection W satisfies the additional equation
o] .
DMW - h(Xt75 + T{5)W ;5 =0 inR (2.6)

and appropriate boundary conditions on B. In Equation (2.6) A stands

for the Laplacian operator and D, the bending stiffness, is given by

__ B
b= 12(1-v2) (2.7)

The separation of the solution into two parts in line with
Equation (2.1) has been found convenient because of the linear homo-
geneity of Equations (2.4) and (2.5) in U; and T{j . That is, for
a given function W(x,y) these equations represent a boundary value

problem whose solution may be expressed symbolically by means of

Tj'_J =% <W,iW,J> (2.8)

in R

(2.4)
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The operator so defined obeys appropriate superposition principles, e.g.,

gty = wp + Gy + 8 + (B (2.9)
It is also noted that for sufficiently small values of A (say, A < 2o))
Equations (2.4), (2.5), and (2.6) admit only trivially vanishing solu-
tions. For A > A, these represent unstable configurations. Other
(i.e. buckled) configurations exist in that case, although not all of
these may be stable.

lwt is superimposed on W, then,

If a small vibration w(x,y)e
after linearization with respect to w, the governing equation of motion
is

DAMW - h(At9, + T - ht! - hpw =0 (2.10)

t
. . . W
1J 1) )wilj 137,13

in which
B o= paf (2.11)

with p representing the mass density. The dynamic membrane stress

tij (or rather its amplitude) is given symbolically by

t]'..j - ]5-. <W}iw73 + w’iwhj> (2.12)

if in-plane inertia is ignored.*

We consider now a rectangular, simply supported plate covering
the region O $x ¢S a, O < y Sb. It is postulated that the edges are
made to approach one another by a specified amount and are then held

fixed during the vibration. This seemingly artificial type of boundary

*For the case of shallow shells this has been justified in Ref. 23.



condition is equivalent to fixing* the boundary while the plate is
heated uniformly; this is considered to be a reasonably realistic
representation of actual conditions.

The complete set of boundary conditions for the static case

is therefore as follows:

B]_(W) = W(0,y) = W(a,Y) = W(x,0) = W(x,b) =0 (2.13)
Bg(w) = W,XX(O)Y)

uO(O’Y) = VO(X:O) = 0; uo(a:y) = Ug, Vo(x)b) = Vg

Woax(2,¥) = W yu(x,0) = W o(x,0) =0 (2.14)

(2.15)

(o] - O — 110 - 110 =
v (0,) = v, (8,7) =ud(x,0) = u% (x,b) = 0

y

U'(0,y) =U'(a,y) = V'(x,0) = V'(x,b) =0
(2:16)

[
o

V:x(O’Y) = V;x(a!y) = U;y(x,O) = U:y(x)b) =

Up and Vg are the magnitude of the displacements which are required
to cause the plate to buckle in the linear sense; thus the value of X
determines the extent to which the critical deformation (or temperature
increase) has been exceeded.

For the dynamic case the boundary conditions are

0 (2.17)

B]_(W) W(O:Y) = V(a:Y) = W(X:O) = W(X,b)

Bg(w) = V,XX(O;Y) = W’xx(a:Y) = w’yy(x,O)
u'(0,y) =u'(a,y) = v'(x,0) = v'(x,b) =0
vix(0,3) = vix(a,y) = uly(x,0) = u'y(x,b) = 0

w,yy(x,b) =0 (2.18)
(2.19)

in which u' and v' are the dynamic displacement amplitudes of a

point in the x and y directions, respectively.

* Actually, fixity is assumed only in the normal direction, while the
plate is free to slide in the direction of the boundary. This type
of shearless constraint reduces the computational labor enormously,
yet is believed to introduce no significant deviation from the com-
putationally far more intractable condition of full fixity.



CHAPTER III

THE PERTURBATION SOLUTION

In this chapter we obtain a solution to both the static and
dynamic problem through a perturbation expansion. As usual this
method is operative only within a limited range of the perturbation
parameter; for large values the series converges too slowly to be
handled without excessive labor. In the present case the results ob-
tained appear to be acceptable up to a value of at least ten of the
post-buckling parameter A. The static portion is similar to previous
work by Stein,(18) but has had to be rederived in order to make the
dynamic portion comprehensible.

We consider first the static case. It is required to solve
Equation (2.6), in which tgj and ug satisfy Equations(2.2) and
Tij’ U; and W satisfy Equations (2.4), with the associated boundary
conditions Equations (2.13), (2.14), (2.15) and (2.16).

Fquations (2.2) and (2.15) represent the usual problem of
plane elasticity, whose well-known solution for a rectangular plate is

u®(x,y) = Ug 5.1)

VO(X’Y) VE

o)rd o

where Up and Vg are found later on.
We now assume the functions W and XA to be expandable in
a power series in terms of an arbitrary parameter € in the neighbor-

hood of the point of buckling € = 0, that is, with W= Ww(x,y,e€),

W= ew(d) & Sw(3) | e5w(5) + e (3.2)
=2 + e2k2 + ehku Foaees (3.3)
-9-

5
|
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Here W(n)* are functions of x,y only and e, the perturbation
parameter, will be assumed to be monotonely increasing as buckling
progresses. The fact that W 1is odd and A is even in € may be
easily verified upon substitution in the relevant equations. For
the sake of brevity these steps are omitted here. Since at the
point of buckling, € =0, A, 1is identified as the load parameter
for the Euler buckling load. 1In view of Equations (2.8) and (2.9)
Tij can be expressed in terms of the arbitrary parameter ¢ as
follows:

. _ 5 _pn(p)
19T pél ) Ti? G4

in which

o) - 2 (D) 2@, e (505)

’
The membrane stress equilibrium equations can be written in terms of

the additional displacements as

l-y 1+v 1+v 1-v

U, + =% U Xy =W W - W W - =Y
y XX 2 Uryy * 2 » Xy 3 X XX 2 W’y ' Xy 2 W,xwyyy
(3.6)
l-v l+v 1+v 1l-v
1 1 1 - - - — - —
Vaoy T2 Vo T2 Uy T Wy T Wy T T2 YayYxx

In view of this the additional displacements U' and V' can also be
expanded in a power series of the same arbitrary parameter ¢, and the

series is expected to start with the second power of € and to contain

* Superscripts in parentheses are intended to identify the variable and
not to act as an exponent. Whenever possible, however, parentheses
will be omitted where there is no possible confusion and will be in-
cluded only if necessary.
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only even expansions. Thus,
ur = e2u(@) 4 MuB) (3.7)
V' = e2V(2) + ehv(h) + ... (3.8)

When these expansions are substituted in Equation (2.6) and
other relevant equations, the requirement that each coefficient in the
power series vanish individually leads to a set of linear differential
equations with associated boundary conditions. These equations can be
solved in sequence.

For el the differential equation is

Ll(Wl)'_—'_ Do - hxotgjwfij =0 (3.9)

and the boundary conditions are

B (W) =0 ; (3.10)
By(W') =0 (3.11)

This is the linear eigenvalue problem for the buckling of a rectangular
plate subject to edge compressions or displacements. It is now assumed
that the edge displacements are such as to induce a hydrostatic plane

stress,¥* that is,

l-v
UE—-Ea
Vg = - 1-v (3.12)
E
o)
tij = - 8ij

There exist an infinite number of eigenvalues and eigenfunctions. The
normalized deflection function

wl = h sin DX gip E%X (3.13)
a

¥ This corresponds to the case of uniform heating of a thermally
isotropic plate.



in which m and n are integers, automatically satisfies the boundary
conditions. This fixes the physical meaning of € as representing
the amplitude of the first term in the perturbation expansion. The

associated eigenvalue takes the familiar form

_D (men2
o=k G

) (3.14)

Any combination of m and n in the above expression can be identified
as an eigenvalue of the differential equation. If only the first buck-
ling mode is of interest, the lowest eigenvalue associated with the
first buckling mode is obtained by choosing m =n =1 regardless of
the aspect ratio %. of the plate.

For e3 the differential equation is

L (W) = it ywty g + nr2 gty (3.15)
in which
Ty mF (B0 629

with Wl given by Equation (3.13).

The associated boundary conditions are
B (W)
Bo(WP)

0 (3.17)
0 (3.18)

]

1]

The differential Equation (3.15) here is nonhomogeneous, but
the associated homogeneous equation is identical with Equation (3.9).
This homogeneous system has the nontrivial solution wl. The nonhomo-
geneous differential equation therefore has a solution if and only if
the right hand side of Equation (3.15) is orthogonal to Wl.(Eh) When

Equation (3.9) is multiplied by W and Equation (3.15) by WL, after
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integration by parts and in view of the boundary conditions, this

orthogonality condition becomes

] A WA
/ tijwl w,dA

y1 s d

(3.19)

Furthermore, the solution is not unique. Any arbitrary multiple of wl
added to a particular solution is also a solution of the differential
Equation (3.15). Let W be a particular solution. Then W is, in

general, given by

WS =ﬁ5 +a3wl (3.20)

The choice of the value of 0z is arbitrary. For convenience of compu-

tation let

2 whw, =0 (3.21)

EELELE

then

| tiiwliﬁﬁjdA
0 Wt wl A

iJ,

(3.22)

This is always possible, since in the present case

f tljwl Wi aA = - f W%iW%idA <0 (3.23)

»i7,J
Let the vector E? denote any stress field Tij symbolically,

and let the inner product of two vectors Ta and 'TB be defined by

.t -n g 'IaJE?J (3.24)

in which E?J is the strain associated with the stress T?J . In view

of the positive definiteness of the strain energy and of the symmetry
of the stress-strain coefficients, it follows that Ta -7?1 is positive

definite and that ."1!‘1 . Tﬁ ="ﬂ3 . _I'a .
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By Equation (3.16), through the application of Green's
theorem, and in view of the boundary conditions, it can be shown
that

il S % hof T%Jw}iw}jdA (3.25)

Likewise we define
T (WW) =h [ Ty Wi W 504 (3.26)

Equation (3.19) can be written

2 2
Ay = -%:—-—%— (3.27)

Since, for positive k,'ﬁb . T2 is negative, [see (3.23)], and since
?2 . ﬂ? is positive definite, A, is always positive. This, in turn,
confirms the well-known fact that the load parameter increases with
increasing buckling amplitudes near the buckling point; the latter
therefore represents a point of stable equilibrium.

For 2 the governing differential equation is

I (W) = h}‘2tgjw?ij + h)‘ht(i).jw:,tij + hT.?LJW?ij + hT){jW%ij (3.28)

in which

s

Tyy = 3 (a5 + Wil 3) (5.29)
with associated boundary conditions

B (W) =0 (3.30)

By(W’) =0 (3.31)
As before, the right hand side of Equation (3.28) must satisfy the
orthogonality condition if the equations has a solution for W>. Thus,
A R PR

[ A35WL4W ) g3

Ay = - (3.32)
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Let W2 be a particular solution of Equation (3.28), then

W =W+ a5Wl (3.33)

Iet, for convenience,

1
i t‘i’dw W 484 = 0 (3.34)

’

from which
R
[ £33V, j3A

(3.35)

Qs

In terms of the inner product notation, Equation (3.32) reduces to

Al
Ay = ;%E_T:%E (3.36)

in which Equation (3.29) has been utilized. Since T . #2 can ve

either positive or negative, no conclusion can be drawn relative to

b

the sign of the value of

Ay -

The equations which contain higher powers of € can be solved
in the same manner; however, the calculations become exceedingly cum-
bersome. For the range of values considered here no further expansion

has been found necessary.

We now consider the vibratory motion of the plate. It is noted
that the method of solution in the dynamic case is similar to the one
used above and hence only the essential points are presented.

The equation governing the motion of the plate is Equation
(2.10). For the sake of convenience, it is rresented again:

DAAW - h(at® +TiJ) LY - nt! . W 1y - whv =0 (2.10)

i3 137,141
with

.1
ty =5 (W,1%,3 + v,10,5) (2.12)
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subject to the boundary conditions
By(w) =0 (2.17)
By (w)

Here, A, tgj, Tij and W are now assumed to be known. The differential

0 (2.18)

equations and the boundary conditions are linearly homogeneous in w,
and once again we have an eigenvalue problem in which p represents the
eigenvalue. For each eigenvalue paHs there exists an eigenfunction
pqw(x,y) which satisfies the differential equation as well as the
boundary conditions. The prescripts p,q denote the pqth mode of
vibration.

We assume that the eigenfunction pq¥ and the associated

eigenvalue can be expanded in a power series in terms of the same

pgM

parameter € as in the static case, that is,

¥ = pg#( P + € pqr2) + & oM+ Ll (3.37)

n(0) 4 &2 D w(2) 4 et pq“(h) + oeeea (3.38)

pa* = pq q

The fact that pg¥ and pgHt are even expansions in e may be easily
verified upon substitution in the relevant equations. For the sake of
brevity these steps are omitted here. In view of Equation (2.12)

pqtij can be expressed as

v (1 5)
pqtij = epqtij + € pgbiy * € potil *oeee- (3.39)

with
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Upon substitution of these perturbation expansions in Equation (2.10)

a new sequence of differential equations is obtained whose solution

follows procedures analogous to those presented for the static case.

From here on the preseripts p,gq will be omitted, it being

understood that w(n), p(n) and t£g) denote the nth perturbation

coefficients of the deflection, frequency squared and membrane stresses

funetions, respectively, for the pqth mode of vibration of the plate.

Whenever there is a possibility of confusion, or a specific mode of

vibration is referred to, the prescripts will be added.

For €© the differential equation is
I,(w°) = DAAw® - h}‘otgj"’?ij - %hw® =0

with the associated boundary conditions

Bl(wo) 0

Bp(w®) =0

H

This is satisfied by the normalized* function

_ . PrX any
w0 = sin - sin —b—

in which p and q are integers, provided that

2 2.2 2 2
o= (BF L O PR, I8 )

The membrane stresses tl can now be obtained from

13

tij ’% < Wy "?ﬁa)

* Naturally the linearized vibration solution is subject to an

arbitrary amplitude factor.

(3.40)

(3.41)

(3.4%2)

(3.43)

(3.L44)

(3.45)
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For €2 the differential equation is

Lp(w5) = h(0tdy + TEg)Wlyy + BET W5 + uohu (5.46)

and the boundary conditions are
By (v?) =0 (3.47)
Bp(w?) =0 (3.48)
As before, the right hand side of Equation (3.46) must satisfy an

orthogonality condition* if a solution is to exist. After some manipu-

lation this leads to

e
- (AT° + ) . (vOu°) 4L .
u =

(3.49)
h [ (w°)23da
The solution of the differential Equation (3.46) is not unique; any

multiple of w° added to the particular solution is also a solution

fe)
~

H
«t
jng
)]

o8

1 Am TR~
. I

-
vl u

oo Y -~
LT danc Ul

convenience we let

[ wewfaa =0 (3.50)
Thus, w2 is determined and tij can now be obtained from

35 =5 (Wely + iy + W00y + v 5 (3.51)

For eh the differential equation is

Ly(w") = meQ (Mwdyg + Agvogy) + thjw?iJ + BT g s
(3.52)

¥ Note that this orthogonality condition is different from the one
pertaining to the static case.
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and the assoclated boundary conditions are

I
O

Bl(WL") =
4

(3.53)

(3.54)

I
(@]

By(w
Agein, the orthogonality condition determines the value of

W _ ()\)fl'b +Th)-(w°w°) + (M +—T,2)-(w2wo) PP 2 2 2 (Wlwe)

5
w°)2
n [ (w)"aa (3.55)

while the deflection function wh satisfies

[ v*Caa =0 (3.%6)

Since the static deflection is truncated at the coefficient
W5, there is no sense in pursuing the solution of the dynamic problem
beyond this point.

The results of these calculationsare given in Appendix A for
the general case of a rectangular plate. The first part deals with the
static problem. Algebraic expressions are given for the expansion terms
in the deflection W(x,y), the additional stresses Tij(x,y), the load
parameter )\, and the additional membrane displacements U'(x,y) and
V'(x,y). These are not necessarily based on the assumption that the
plate buckles freely immediately after its unbuckled equilibrium con-
figuration becomes unstable; however, the case of m =n =1 is the only
one which has practical significance.

The dynamic response for the same case is computed next.
Again general algebraic expressions are given for the vibration modes,
membrane stresses, and frequency parameters. Only the lowest two modes

p=1,g=1 and p =2, q =1 are considered; an obvious, and trivial,
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extension is easily obtained for p =1, g =2 through a suitable
exchange of variables.

Higher buckling.modes (say, m = 2, n = 1) are of course
associated with larger critical buckling parameters; however, as the
lowest buckling parameter A, is exceeded, at least one frequency
becomes imaginary and the associated unbuckled equilibrium configura-
tion becomes unstable and hence physically meaningless. Nevertheless
it is conceivable that if the plate were forced into one of these
higher buckling modes (perhaps through the application of kinematic
constraints), its equilibrium may again become stable for sufficiently
large buckling amplitude. A necessary and sufficient criterion for
such a condition is that the square of the smallest frequency of vibra-
tion becomes again positive.

This may be physically significant. As has been observed
and commented on repeatedly, buckled plates often snap from their
original buckling configuration into another one. Just when this type
of "secondary buckling" takes place is conjectural and has been the
object of some speculation; for example it has been postulated that a
suitable criterion is obtained when the energies in the primary and
secondary states are equated.(25) In any event it is safe to state that
a snap-through from a stable configuration into an unstable one can be
ruled out. The lowest loading parameter at which the secondary configu-
ration becomes stable may therefore be considered a lower bound to the
secondary buckling parameter.

Charts showing the frequencies of vibration for specific cases

are given in the present paper for several such higher buckling modes,
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and in Appendix A are included the general algebraic expressions for
the vibration modes, membrane stresses and frequency parameters of the
lowest two modes p =1,q =1 and p =2, q =1 if the plate has
buckled into the second mode m =2, n =1. The general algebraic ex-
pressions of u° and p2 are given for any vibration mode and for any
buckling mode. These expressions are generally rather complex and have
therefore been deleted from the main body of the paper.

For the special (and, near the buckling point, most important)
condition of m =n = p =q =1, the formulas become much simpler.
Since, for that case, w© = Wl, it follows from Equation (3.40) that

e =0 (3.57)
as expected, which in turn implies that Tl =212 and w2 = 3w5. When
these relations are substituted in Equations (3.49) and (3.55), it

follows, after some manipulation, that

2 ﬁ%é . PR ©  xe
Im ——————— T — ‘—) }\ (3'58)
YT [ W2 e° Tpal e

ul

_ ando R 4 gl . (WD) + 15T . R } h(ﬁg + 525) Ny, (3.59)
h f (wl)EdA a b

For the rate of change of frequency of vibration with respect

to the load parameter in the neighborhood of buckling (e = O) one obtains

i 2
Iim @ _ Lim du /ax_ul® (3.60)
€e—0 d\x e-—0 de de A2

For the vibration mode p =gq =1, p(e) is positive and so is the value
of g% at the point of buckling, as anticipated since the plate is stable
in the immediate post-buckling neighborhood. A similar, though less im-

portant, conclusion is reached for any vibration mode satisfying p=m, q=n.



CHAPTER IV

THE ENERGY METHOD SOLUTION

In the perturbation method, the rapidity of convergence of
the perturbation series is always an issue. In some problems the
series converges falrly rapidly, in others it converges only for a
rather small range of values of the load parameter A. An indication
(though not fully conclusive) of the convergence of the perturbation
series is the agreement between the results obtalned from the trunca-
tion at the term €@ and eR-l. The present calculations show satis-
factory convergence for a technically significant range of the load
parameter. Nevertheless the truncated expressions become unreliable,
as expected, when the buckling amplitudes reach very large values.

To cover this range at least approximately an energy method is employed
in this chapter.

The static condition is analyzed by a method similar to the
one of Marguerre-Papkovitch.(9) The deflection of the plate is assumed

to be expressed by means of
W= oW+ CoWP + CxW (4.1)

in which wl, W and W are geometrically admissible functions and
Cl’ 02 and 03 are parameters whose values are to be determined from
the theorem of minimum potential energy. With this assumed deflection

function, the additional membrane stresses can be obtained from

1
TiJ
Equation (2.8), that is,

= cortl 4 2122 4 2133 4 c.o 2 4+ coc.TE 4+ C e ™3 (4.2)

13 171 2713 3713 17271} 173713 3713
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in which
T%i;:% 1W,J>
Tﬁ‘% <wfiwfd>
RS RUAAY
SRR RED
HoE - )
SRERCIREID

The additional potential energy V, that is the difference

in the potential energies of the buckled and unbuckled states, is de-

fined by
o e - (4.3)
in which
W= 5 [(1-v)W,iJW,iJ + W, 13W, 35]aA
=2 o man-1TF
We = - g J 4w iW saa

After application of Green's theorem, membrane stress equilibrium
equations (Ti 3,5 = 0) and boundary conditions, the membrane strain

energy U, 1s now given by

=B by
If the edges of the plate are simply supported, the bending strain

energy U, reduces to

O =5/ W,10¥, 55 -




=2l

Since tgj = - Bjy » W becomes

W

h
e =3 J W qW jdA (4.6)

Upon substitution of Equations (4.1) and (4.2) into Equation (4.3) we

have

V= (G - WG+ (R - wDB + (R - w)S
+ H(AT + B2 4 B+ T2 + 00T 4 e ) (B.T)
. (B 4+ cB1P2 4 BP0 4 0y 2 4 0T 4 et

in which#*

Gy = 3 ) ViV

,iil",
-
2.

11 _nh 1l
wezgfw.w da

[ Wiy ygaa

VTS

[ W, W, A

»117,34

VTS

,1 ,1
wgz = 2— / W?i"’%id-’*
W = 2 J Wi,iwi,idA

Setting the first variation of the potential energy equal to zero leads

* Terms such as U%z, Wiz etc. may also appear; however, if W(n)
are chosen to be orthogonal functions, these terms vanish from the
above expression.
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to

2([)%1 - xwél)cl + 2(THL. -fll)ci ¢ (T2 F2 L, _'1322)0105
+ (B2 F0 4 o B)0ycf + 3L F2) Ao, 4+ 3L )2,
PTGl R, S ¥l3)C10203 + (TP, '1*12)03 + (12 F5 , P2, ?B)CSCE

+ (2. T2 L P PBy0 68 4 (5. )3 = 0 (k.8a)

2(C2 - aE2)c, + 2(F2. ?2)c3 + (F2. 2, gL, 2)c2c,
+ (PP3. 3, SRR, ?‘33)0205 + 3(¥2. .T*lg)Clcg + 3(T°2. ’9?5)0505
+ 2(&’22- 3, P2, T1‘23)010203 + @53- 323)02 + (-f‘ﬁ- T2, P35, }23)01%

+ (B85 2. B ey o (B P2)63 - o (4.80)

2073 - wP3)c5 + 2(3. P3)cd + (F5.H3 . 2311-?33)c§c5

+ (P29 4 o122 B3) 2oy + 5(F3 F)0y 5 v 3. )0,
C2(BP. 2 LW P00+ (BT E0G 4 (L L FL. B2,
+ (2.0 . H2. P30 + R #3)F -0 (4.8c)

C15, Co and 03 can be solved in terms of the load parsmeter A from
Equations (4.8).
The deflection functions of the lowest buckling mode can be
assumed to be of the following form
Wl = sin X x sin X y
a b

We = sin %xsin ?Bf y (4.9)

3 = gin X on
W sinaxsin..s_y
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This assumption is not without Justification. wl is the buckling mode
as predicted in the linear theory. The formation of a W wave along
the unloaded edges and in the direction of the loads has been observed
experimentally in the buckling of a simply supported plate subjected to
longitudinal edge compressions. It is therefore reasonable to include
both W2 and w3 functions in the present problem. Note that Wl is
also the first term of the perturbation series for W and (W° + W3)
is the second term of the perturbation series for a square plate.

An exact solution to the dynamic problem is generally out of
the question, in spite of its linearity, because of the presence of
functions of x and y as coefficients in the relevant differential
equations. For this type of problem the Galerkin method (which, for
conversative systems of the present kinds, represents essentially a
modified energy method) yields comparatively good approximations which
are known to constitute upper bounds to the exact eigenvalues.*

If the vibration mode is assumed to be of the form

N

v = 2 agw(x,y) (4.10)

n=l

then this technique leads to the linear system

N

Z aPyn =0 (m=1,2, ..., N) (k.11)

n=l
in which

P =Py, =D/ (&0)(a™aa + XI° (vE) + Fr. (W)

£ 20.(W ) - b [ vTaA (%.12)

with

t;lj = % <W,1Wr,lj + W?iw’j> ()'l']j)

* No such statement can be made here, of course, as long as the static
problem itself has been solved only approximately.
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These equations have a non-trivial solution for a, if

determinant |Ppy| = O (L.14)

from which p 1s computed.
In the present analysis four terms have been used in the

approximating series, namely,

wl = sin X sin

w2 = sin ™ sin
(4.15)

sin 27X sin

Wi

W' = sin 222 sin

The squares of the frequencies of the various modes are plotted as
functions of the load parameter A, with the results shown in the
chart.

To determine the stability and instability of the buckling
modes it is necessary to examine the second variation of the potential
energy V. The latter is given in Equation (4.3), which, for convenience,

may be written symbolically

Vo= Uy (W,W) + Uy <ww> <w»> - % ATO . (WW) (4.16)

The following expansions identities are also useful:

Up(W4w) = Up(W,W) + 20, (W,w) + Up(w,w)

() <Oy (o) G+ bty ) (o
+ 2Uy <ww> <ww> + bupg <WW> <WW> (4.17)
i (o) (o o o) o

TOu (Waw) = TP« (WW) + STO. (Ww) + TO. (ww)
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A configuration is in equilibrium if the potential energy assumes a
stationary value. By standard methods this leads to Equation (2.6)
in the present problem. The second variation of the potential energy,
which determines the stability or instability of the buckled state,

takes the form

82V(Ww;nn) = Upy(n,n) + 2Up <WW> <nr> + huy <Wn> <W'q>
-1 - (m) (+.18)

After some integrations by parts and upon application of the boundary

conditions, this leads to

52V(WW;1]1]) f [g n,iijj - g(ltjo_j + Ti',j)n,ij - gTijw,ij]" dA ()-#.19)

in which

L]

|-

<W,1Tl,3 + Tl,iw,j> (4.20)

e -
Ca

It may be of interest to note that in view of Equation (2.10) the eigen-
values ., are equal to the stationary values of this expression pro-
vided the function n(x,y) is chosen to be the associated normalized
vibration mode wp(x,y). Since positive values for all up have pre-
viously been identified with stability this confirms the familiar con-
nection between stability and the positive definiteness of the second
variation of the potential energy.

It is recalled that A is the ratio of the edge displacement
to that required for the initial instebility. Now let 1y Dbe the ratio
of the edge compressive force caused by the prescribed edge displacement

to that required for initial instability. Then 7y is related to A



by the equation

L (M3 + T§4)ds

S (k.21)
i Aotyy ds

in which the integrals are along a loaded edge. The buckled state is
often characterized by its y versus A curve, i.e., the load-shortening
curve. The intersection of the load-shortening curve of one mode (say
the symmetric mode which corresponds to the lowest buckling load) with
the load-shortening curve of another mode (the antisymmetric mode which
corresponds to the next lowest buckling load) usually indicates a possi-
bility of the change of buckling modes. Just when and where this type
of secondary buckling takes place is conjectural. Various authors(25’26)
consider it reasonable to apply the equal energy criterion to determine
the change of buckling modes. Hence, the primary buckling mode may change
to the secondary buckling mode when

Vi =V (k.22)
in which Vj; 1is the potential energy associated with the primary buckling
mode and Vo that associated with the secondary buckling mode.

In the present analysis, the vibration method and equal energy
criterion are used to determine the stability of the buckling modes and
changes of buckling modes. In addition to the problem stated in Chapter II,
the stability and change of buckling modes of a simply supported rectangu-
lar plate subjected to uniaxial edge compression is also investigated by

the present method. The details of this analysis are presented in

Appendix B.



CHAPTER V

RESULTS AND DISCUSSION

Charts showing the frequencies of vibration and the load-
shortening curves are given in nondimensional quantities p', A' and
A", in which u' = u/u(g)“ 2o, A = M2(5)2 D and A" = x/h(g)2 2.
All calculations are based upon the value of Poisson's ratio v = .30.

Figure la shows the relation between u' and A' for small
values of A' for a square plate subjected to plane hydrostatic pres-
sure. The results are obtained from the perturbation series which con-
verges satisfactorily for A' < 16. Only the two lowest vibration modes,
i.e., P=1l,q=1 and p =2, q =1, about the lowest buckling con-
figuration (m = n = 1) are plotted. It is interesting to note that '
inereases practically linearly with A' in the vicinity of initial in-
stability for both the symmetric (p =g = 1) and antisymmetric (p = 2,

g = 1) vibration modes.

The frequency of the symmetric vibration mode is strongly
affected by the increase of 1A', the rate of increase of pu' after
buckling heing twice as much as the rate of decrease before buckling.

For example, with A' = 4 and pu' =5.8, the "stiffness" of the plate
has increased to 2.41 times that of the unbuckled state while the maxi-
mum deflection at the center of the plate is only 1.5 h. This rapid
increase in the stiffness after buckling is important in flutter analysis.
In general, the vibration mode associated with the initial buckling mode,
that is, p =m and g = n, is the mode affected most strongly by the
increase of A'. For further increase of A' the frequency of the
symmetric vibration mode becomes higher than that of the antisymmetric

-30-



-31-

mode. This is not unreasonable since the antisymmetric vibration is
primarily inextensional while the symmetriec vibration is primarily
extensional.

The results of the same problem as shown in Figure la but for
a larger range of values of A' are shown in Figure 1b. The solid
lines represent the perturbation solution up to A' = 50; however, the
results become less reliable since, for A' > 20, the perturbation
series for the symmetric vibration mode converges rather poorly. 1In
contrast, for the antisymmetric vibration mode it still converges
satisfactorily for values of A' up to 40. The dashed lines represent
the results of Equation (4.14) when the approximating series takes the
form of Equation (4.15). It is noted that after a further increase of
A', the frequency of the symmetric vibration mode increases less rapidly
and eventually becomes again less than that of the antisymmetric vibra-
tion mode. This is due to the fact that for large values of A' two
nodal lines appear in the symmetric vibration mode, which therefore be-
comes more nearly inextensional. Figure 2 shows the shapes of the sym-
metric and antisymmetric vibration modes for various values of A°'.

Figures 3a and 3b show the relation between y and A' for
the same case of a square plate subjected to plane hydrostatic pressure.
The perturbation results are shown in Figure 3a, the energy method re-
sults in Figure 3b. The rate of increase of 7 after buckling is only
one fourth as much as that before buckling (as against one half in the
case of uniaxial edge compression).

Figure 4 shows the relations between u' and A' for rectangu-

lar plates of various aspect ratios. The plates are assumed to be forced
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into the second buckling mode (m =2 and n = 1) through the application
of artificial kinematic constraints which, however, do not restrict the
freedom of dynamic vibratory motion. For m =2, n =1, the vibration
mode associated with negative pu' corresponds to p =q =1. For all
other modes, u' 1is positive in the viecinity of the initial instability
and up to values of A' which are of interest to us; hence they are not
considered here.

The solid, dashed and dashed-dotted curves represent p'
versus A’ for the p =q =1 vibration mode of plates of aspect ratio
1, 2 and 2.45, respectively. It is noted that pu' remains negative
for all values of A' > 1 for aspect ratios of 1 and 2, respectively,
at least within the limit of the truncated series.* For an aspect ratio
of 2.45 u' becomes positive at A' = 7.70; moreover, the truncated series
shows satisfactory convergence for the range of values considered. This
means that the m -2, n =1 buckling configuration will become stable
even after the removal of the artificial kinematic constraints for suffi-
ciently large values of A'. In this case secondary buckling from the
fundamental mode into the second mode may occur; in contrast such secondary
buckling is ruled out for a square plate under hydrostatic pressure.

Figures 5, 6 and 7 show the load-shortening curves of the
lowest buckling configurations (m =1, n =1 and m =2, n =1) for the
plates considered in Figure 4. For a square plate (Figure 5) the edge
displacement in the antisymmetrie buckling configuration (m =2, n=1)

increases with decreasing load when A' > 7.0, confirming the previous

* Slow convergence raises doubts as to the reliability of this statement
for a/b =2.
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conclusion that the antisymmetric buckling configuration for a square plate
remains unstable. Figures 6 and 7 treat the rectangular plates of aspect
ratio 2 and 2.45, respectively. It is interesting to note that a new
equilibrium configuration (not shown) becomes possible at the value of
A' at which the antisymmetric buckling configuration becomes stable. This
secondary bifurcation and the unstable character of the new configuration
can be shown by considering the first and second variations of the potential
energy. The value of A' associated with equal potential energies for the
two stable buckled states is also indicated in Figure 7.

The possibility of secondary buckling from the fundamental mode
into a yet higher mode (m = n = 2) 1is treated in Figure 8, which shows
the u' wversus A' curves of a square plate subjected to plane hydro-
static pressure after the plate has been forced to buckle into that mode.
Only the two vibration modes p =q =1 and p =2, q =1 produce nega-
tive values of u'., It is noted that these values remain negative; hence
for a square plate the buckling configuration m = n =2 1is also unstable.
This is confirmed by the load-shortening curves of the m =n =1 and
m =n =2 buckling configurations shown in Figure 5. Since the two
curves do not intersect the possibility of snap-through from the symmetric
(m = n = 1) buckling configuration into the antisymmetric (m = n = 2)
buckling-configuration is ruled out.

The behavior of plates subjected to uniaxial edge compression
is radically different. This has been treated by Stein(lB) and others
and is corroborated in Figures 9 and 10. In this case even a square
plate exhibits a stable antisymmetric (m = 2, n = 1) equilibrium configu-

ration when A" Dbecomes sufficiently large. This change=-over from
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instability to stability is again accompanied by the emergence of a new
unstable configuration (again not indicated in the figures). It is

noted also that the values of A" so defined (representing lower bounds
to secondary buckling) as well as the values of A" associated with
equal potential energies are very much smaller than in the case of hydro-
static pressure. This is in good qualitative agreement with reported

test results.



CHAPTER VI

CONCLUSIONS

It has been demonstrated that perturbation techniques can be
used effectively to analyze the dynamic behavior of rectangular plates
after they have buckled. The ensuing series show satisfactory conver-
gence for a technically significant range of the load parameter.

Natural frequencies of vibration have been shown to be ex-
tremely sensitive to buckling amplitudes, displaying the most pronounced
increase in connection with the symmetric vibratory mode. For suffi-
ciently large load parameters this mode, which is primarily extensional,
ceases to be associated with the longest period of vibration; however,
it becomes more nearly inextensional as buckling proceeds and may there-
fore again return to its previous fundamental position.

The stability of higher buckling configurations has been in-
vestigated by studying the real or imaginary character of the frequencies
of vibration about these configurations. The results indicate that all
plates under uniaxial edge compression, and rectangular plates of suffi-
ciently large aspect ratio under hydrostatic edge pressure, may eventually
exhibit stable secondary buckling modes. The concomitant load parameters
represent lower bounds to "secondary buckling loads" which signify the
possibility of a sudden snap-through from one buckling configuration into
another. This phenomenon had been widely observed before; the present

calculations tend to conform with previously reported experimental results.

-h7-
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(3) General Algebraic Expressions for pq”(o) and Pqu(E)

1A F B [ g (s

B ] BB ]

e Y e

4,72 %
51 g f $he griprist o Prin) G)
+ /[té -/ "'i f ‘/[6"“’/@7‘/;7"’/['}/‘/
) (ﬁaff‘w‘ )" iy ng) " CE)*
(b e ¢ “7)71:1/7: # /(/./;,/’(;,Z/’,“[f-mjg/jz

(/4-5,:) -

4,05+
WL e ANy /
(- g (]



APPENDIX B

VIBRATIONS OF A SIMPLY SUPPORTED RECTANGULAR
PLATE UNDER UNIAXIAL EDGE COMPRESSION

This problem concerns itself with the vibrations of a simply

supported rectangular plate which is subjected to prescribed total edge

thrusts at x =0 and x = a. The differential equation governing

the static deflection of the plate is again

(o] 1
DAW - h()sciJ + Tij)w’ij =0

in which
-1 0

o

t
i
J 0 o0

v 1 ,
T3 =2 <W'1W’J>

(B.1)

(B.2)

(B.3)

The operator (B.3) is identified with the same set of equations as in

the main body of the paper, except for a change in the boundary conditions.

That is, instead of U'(a,y) and V'(x,b) vanishing, the new boundary

conditions read

U'(a,y) = k1

]

V' (x,b)

]

ky

in which ky and k2 are determined from

b
f T}'(X(a’y)dy =0
(o]
a
=0

of T&y(x,b)dx

(B. &)
(B.5)

(B.6)

(B.7)

Alternately, the previous set of boundary conditions may be used and two

uniform additional tensile stresses, one in the
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x direction and the
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other in the y direction, may be superimposed so as to satisfy
Equations (B.6) and (B.7). In the dynamic case, this problem has the
same differential equation and same boundary conditions as in the
main body of the paper except tgd takes the form of Equation (B.2).
The method of solution for this problem is the same perturbation
method presented in Chapter III and hence it is not repeated here.

The general algebraic expressions for the static deflection,
the static additional membrane stresses, the load parameter and the

static additional membrane displacements are as follows:

w=ewld) ¢ S 4 ... (B.8)
T, = e2T(2) + ehT(h) Foeen (B.9)
i3 ij ij
S U N - S (B.10)
mmy\ 2, 2
2 2 2 2 (&) “h
. 2 h' my nx biitd 2nn 2my
U' = € {16(%¥)[-(:;J + V(T; + (;r cos = ]sin - X - 5
o (B.11)
nr\2 2 2 (“—1‘-)2h2
. 2
Vo= e { 6(n“) + v(%?) + (%? cos 221 x] sin gﬂ y - 1)8
+ ... (B.12)
in which
w(1) — b sin BT x gip BT Ty
a b
W(B) = h(By sinAE_ x sin 25_ y + By sin égﬁ.x sin 1;.y)
(2) _ _ En®/mx\° 2nx
Teg = 5 (a cos ==y
2
Ts(]i) - Eh nn) %X

Xy

x}
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(5)  En2,mp2 " Mo
B R
[(E—) +(?b—) }2
()
coszﬂxcos&ﬂy+ b B, cosﬂchSE—n’ly
a b [(2mﬂ)2+ ﬂ)a]z a b
a b
nwx, 4
(=
(b) B)jcos eﬂx cos-l-@ﬁy
2nx\2 mr\2,2 a b
[(—b— +(-a—) ]
(%) B2 (00)2[Fpc0s 201 x - Fyeos lm L™ 5
™ = T(%) {Bucos Sin x - Bycos N x - a (By+B),)
¥y a s [(E2+(FD71?
(B 4 N
2m 2nx s 2my nw
cos _a X cos ——b y + [(? 2+(2:n)2]§ Bycos ——-—a X cos -——b y

my, 4
W) -
8 Bycos h—:ﬁ X cos 2,.& y}

+
2myy 2 Ny 242
[(EEm?2 4 (2m)2)

2 2
my, < nx
7)) (%)
( = ;. 2my 2nxn
= Q\Bh"'Bh) sin == x sin =7

IEY(E)

4)_ ER?
r{ )~ B (i (ayg

2 2
mx, ~ B my 2En:r 2
+ 2(a) (b) ﬁsin—hm’rxsin2nny+ 2(? b) Bh
omx,2 ,nn.2.2 4 a b 2 2.2
(D)) [ +(E5)7]
sin 2ﬂ"-x sin-@ly} ‘
a b
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m:
10=_[£_:_)_(1'_)_
&
e (G
Ao = 16 mrt)2
2 (B% 5, 4 (Bt 5
Ay == 3En21 g b+ 57 B
16 (11_;11)2
_pymmyh
B, - 3(1-v )( )
64 (5L )[( 5( )]
5 .60 ED

64[9(3 )-( oy

Note that A now becomes the ratio of the prescribed compression to
that required for the initial instability. ILet { be the ratio of the
edge displacement caused by the prescribed edge compression to that

required for the initial instability; then { 1is related to A by
b

o) 1 e
= e+ EofU (a,y)dy (5.13)

o
Aou

The k. versus ( curve is now the load-shortening curve. The lowest
buckling mode is given by m = a/b and n = 1.

The general algebraic expressions for the deflection and the
frequency parameter of the vibration mode p =q =1 about the buckle

configuration m =n =1 are

3n

7

=h sin 3 X sin — y + egjh(Blusin g X sin %g.y + ﬁiusin x sin

X
b

d

b

Ly)
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2 2
- 2 Eh® m\k ay4y _ 4 3Eh . my k4 mb =
B =€ —g—{(;) + (59 ] € —E_—{(E) By + (S) Biyl + ...,
in which

512D
64D [(H)Z45(5)%)

By

= 6(1+2) (B)*
B =
SN PR

The general expressions for the frequency parameter of the vibration
modes p=1,q=1 and p =2, q =1 about the buckled configuration

m=2, n=1 are

Dk . 3 P, @@
u* =gl-3@ "+ #Hy + T(F (3_n)2+(2__1r_)2]2
a b

8 b1 L b1 4
. 1(3) (5)
[(EFP+(5 )2]2

2
B () (4B -bmg6)+(D)* (3 Bor3Bp-3B68)

TENEN

(-2Bo)y+25B6+9Bg 1 -25B66)
[(5)2+(55)2)2

(X ) (—)
(L)a (2,‘)2]2 (- 50324‘“9368’49366”369)} e

2 2 -
s @ B AL, by B enly, L by, L

2 b



in which

3(12) (%)

B =
SEYELIVELRTES
_ 3(1-v2) (B)*
Boy = ——
32[144(59 '(59 ]
L
Bep = 3(1-v2) [3" - 225(2) (¢ )

wasMt2@®@M Y [(H2ED?)

4
B6)+ _ -5(1'1'2) 81(2) (%) ]
uu8(5)* + (D22 4 78D 1(DH24(E2)2

T L T )-l-
ne o 302) 255" ®" ug(")“({,i)“ '
M16(H%(2)2 + 0(HY) [(HAEH%12  [2H2ED2)2

_ 3(1-/%) uo(Zf (Bt o
e L R rian e
NN
- -3(1-v2 a’ b
P69 = L ( nve) T\ 4

u[528(5)" + b0o(H2(®?2 + (DY) 1ED2(EH2T

The general expressions for the frequency parameter of the vibration
modes p=1lgq=1,p=2q=1,p=2qgq=2 and p=3q=1 about

the buckled configuration m =3, n =1 are

D gk, Bk, .2 Eh2 Bt <£—> NN 16<a>‘*(s>“
= Drgm* L St . 1
nt "R 9 16~ 15 (EHZ(DH5 (DTDDT

+



z)“(i)‘*
oM = H 'EO(K) + Z(K) ]+ & ?61 (?2% 4)(1[) [( ( ) 1

T o
€25(3) <§> . b,Eh (@

y oy _
+ (12,2 )2]21 (7233h'363166)+(§9 (5 B3y+3B16p-3B167)
a

®'@"
+
[(Z)2+(2:

P e (-450B3 ), ~1225B, 55+1225B, ¢ ~625B; g ,)

(2) (5)
[(2_) (gﬂ) E (- l6233u‘1213166‘1213167' l69)} PR

oo = De0(®" + D@ - Womy 2 BE faemt L '

6D @ wes®'@"  wes@®'® st

T IEHAGHPR T IR )22 (5?2 (5“>212 (D2 E)2]2‘

2 4 L 2 4 h_
_ 2 Eh®r/3n s _ U4 3Eh [ (3x T
511-1 = € —8—[ (—a—) +(g) ] € mn [(—a ) B52+ + (b) B}h] +
in which

213 (12) (%)
641922 + 5(5)2)

B3)+ =

5(1-v2><g>“
2[729(Z ) -(2 1))
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n h n b

3(1-v2) 1225( u}
Bigo = - 3(3)
Mue(®* - HBHY (@2 (2">2 2
Bl = 3(1-v2) 625(3) (S)“ )
M132(D)" + 256(D2@2 + ZE@MY (2243212
) 2s@AEY @M@
P166 = 7\ 2 njél VE) Ty 4 {56(§)h ¥ T 2a 2nb2 2 * 5n : 2: 2 2}
1+[6)4(;) (E) + 80(59 ] [(;) +(¥r) ] [(;T) +(¥r) ]
N
By - s0-2) 2 - 3(5)
T T isiDT - 23" e 5m)Z,Ex)2)2 " b I
5(1-42) (B
Bigg =

asio®” + 102uDP@P + UMY T (IR EER

For the cases of a =b and a =2b results are shown in Figures 9

and 10.
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